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Abstract
This paper provides sharp sufficient conditions for mean convergence of the maximal partial
sums from triangular arrays of dependent random variables with general norming sequences.
As an application, we use this result to give a positive answer to an open question in [Test
32(1):74–106, 2023] concerning mean convergence for the maximal partial sums under reg-
ularly varying moment conditions. The techniques developed in the present work also enable
us to establish a result on mean convergence for sums of pairwise negatively dependent
random variables, which gives an improvement of the main result of Sung [Appl Math Lett
26(1):18–24, 2013] and Ordóñez Cabrera and Volodin [J Math Anal Appl 305(2):644–658,
2005].

Keywords Mean convergence · Dependent random variables · Maximal partial sum ·
Regularly varying moment condition · Regularly varying norming sequence
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1 Introduction

In 1971, Chow [7] established a mean convergence theorem under a uniform integrability
condition. A special case of Chow’s result reads as follows.

Theorem 1.1 (Chow [7]) Let 1 ≤ p < 2 and let {Xn, n ≥ 1} be a sequence of independent
random variables such that the sequence {|Xn |p, n ≥ 1} is uniformly integrable. Then

1

n1/p

n∑

i=1

(Xi − EXi )
Lp→ 0 as n → ∞.

Theorem 1.1 was extended by Ordóñez Cabrera and Volodin [13], Lita da Silva [14], Sung
[15], and Wu and Guan [22] to the case where the underlying random variables are pairwise
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negatively dependent and satisfy some general uniform integrability conditions. Recently,
the authors in [2, 8, 18] investigated laws of large numbers where the norming sequence is
a regularly varying function, instead of the classical power function. A real-valued function
L(·) is said to be slowly varying if it is a positive and measurable function on [A,∞) for
some A ≥ 0, and for each λ > 0, limx→∞ L(λx)/L(x) = 1. A function R(·) is said to
be regularly varying with the index of regular variation ρ if it can be written in the form
R(x) = xρL(x),where L(·) is a slowly varying function. For a slowly varying function L(·),
there exists a slowly varying function L̃(·), unique up to asymptotic equivalence, satisfying

lim
x→∞ L(x)L̃ (xL(x)) = 1 and lim

x→∞ L̃(x)L
(
x L̃(x)

)
= 1. (1.1)

The function L̃ is called the de Bruijn conjugate of L(·) (see Theorem 1.5.13 in Bingham et
al. [4]). If L(x) = logγ (x) or L(x) = logγ (log(x)) for some γ ∈ R, then L̃(x) = 1/L(x).
Especially, if L(x) ≡ 1, then L̃(x) ≡ 1. On the important role of regularly varying functions
in probability and mathematical analysis, we refer to Bingham et al. [4], Jessen and Mikosch
[11].

The following theorem was proved in [18, Corollary 4.10].

Theorem 1.2 Let 1 ≤ p < 2 and let {Xn, n ≥ 1} be a sequence of independent integrable
random variables. Let L(·) be an increasing slowly varying function defined on [0,∞) and let
L̃(·) be the de Bruijn conjugate of L(·). If the sequence {|Xn |pL(|Xn |p), n ≥ 1} is uniformly
integrable in the Cesàro sense, then

1

n1/p L̃1/p(n)
max
1≤k≤n

∣∣∣∣∣

k∑

i=1

(Xi − E(Xi ))

∣∣∣∣∣
P→ 0 as n → ∞. (1.2)

Theorems 1.1 and 1.2 lead to a natural question as follows.

Question 1 Under the assumptions of Theorem 1.2, does convergence in mean of order p
prevail in the conclusion (1.2)?

This question was raised as an open problem in [18, Section 5]. In order to address the
problem, we may consider applying the result in [13, 15, 17, 22], which establishes mean
convergence for the partial sums with general norming sequence bn, n ≥ 1. However, these
papers assumed a condition of the form

sup
n≥1

1

bp
n

n∑

i=1

E|Xi |p < ∞, (1.3)

which may not hold for the case where supi≥1 E|Xi |p < ∞ and bn ≡ n1/p L̃1/p(n) since

L̃1/p(n) may approach zero. Here, again, L(·) is an increasing slowly varying function and
L̃(·) is the de Bruijn conjugate of L(·). As noted in [18], the existing methods do not appear
to be effective in this situation.

The initial objective of this paper is to give a positive answer to Question 1. We will
replace condition (1.3) by a weaker condition that

sup
n≥1

1

bp
n

n∑

i=1

E
(|Xi |p1 (|Xi | > bnε)

) ≤ C1

εδ
for all 0 < ε < 1, (1.4)

where C1 > 0 and δ ∈ (0, 2 − p) do not depend on ε, and then we prove a mean theorem
for arrays of dependent random variables with general norming constants under (1.4).
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It is clear that (1.3) implies (1.4) since

sup
n≥1

1

bp
n

n∑

i=1

E
(|Xi |p1 (|Xi | > bnε)

) ≤ sup
n≥1

1

bp
n

n∑

i=1

E|Xi |p

≤
(
sup
n≥1

1

bp
n

n∑

i=1

E|Xi |p
)

1

εδ

for all 0 < ε < 1 and δ > 0. It is also not hard to see that there are examples where
(1.4) holds but (1.3) fails (see, e.g., Example 5.3 in Sect. 5). We will prove in Sect. 4 that
if the sequence {|Xn |pL p(|Xn |), n ≥ 1} is uniformly integrable, then (1.4) is fulfilled with
bn ≡ n1/p L̃1/p(n).

Our method also enables us to give an improvement of Theorem 2.1 of Sung [15] con-
cerning mean convergence for the partial sums of pairwise negatively dependent random
variables and, as a result, improves Theorems 3.1−3.3 of Wu and Guan [22] and Theorem 1
of Ordóñez Cabrera and Volodin [13]. It is worth mentioning that our proof is totally different
from that of Sung [15], Wu and Guan [22], and Ordóñez Cabrera and Volodin [13].

Throughout the paper, {kn, n ≥ 1} denotes a sequence of positive integers. The de
Bruijn conjugate of a slowly varying function L(·) is always denoted by L̃(·). The sym-
bols C0,C1, c0, . . . denote positive universal constants which may not be necessarily the
same in each appearance, and 1(A) denotes the indicator function of the set A. For a real
number x , log x denotes the natural logarithm (base e) of max{x, e}, and �x	 denotes the
greatest integer that is smaller than or equal to x .

The rest of the paper is organized as follows. Some preliminaries used in proving the main
theorems are consolidated into Sect. 2. Section3 focuses on a mean convergence theorem for
the maximal partial sums with general norming sequences. In Sect. 4, we apply the result
in Sect. 3 to provide a positive answer to Question 1. Section5 presents an improvement of
Theorem 1 in [13], Theorem 2.1 in [15], and Theorems 3.1–3.3 in [22].

2 Preliminaries

In this section, notation, technical definitions, and lemmas which are needed in connection
with the main results will be presented.

A collection {Xi , 1 ≤ i ≤ n} of random variables is said to satisfy Condition (M2) if for
any collection of increasing functions { fi , 1 ≤ i ≤ n} with E fi (Xi ) = 0, 1 ≤ i ≤ n, there
exists a constant C0 such that

E

(
max
1≤k≤n

∣∣∣∣∣

k∑

i=1

fi (Xi )

∣∣∣∣∣

)2

≤ C0

n∑

i=1

E ( fi (Xi ))
2 , (2.1)

provided the expectations are finite.
Condition (M2) holds for independent sequences and many other dependent structures,

including martingale differences, negatively associated sequences, and ρ∗-mixing sequences
with ρ∗

1 < 1. We also consider another weaker dependence structure defined as follows. A
collection {Xi , 1 ≤ i ≤ n} of random variables is said to satisfy Condition (H2) if for all
increasing function { fi , 1 ≤ i ≤ n} with E fi (Xi ) = 0, 1 ≤ i ≤ n, there exists a constant C0

such that
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E

(
n∑

i=1

fi (Xi )

)2

≤ C0

n∑

i=1

E ( fi (Xi ))
2 , (2.2)

provided the expectations are finite. Condition (H2) holds for pairwise independent
sequences, pairwise negatively dependent sequences, and extended negatively dependent
sequences. Of course, if (M2) is satisfied, then so is (H2). Various limit theorems under these
dependence structures were recently studied by some authors. We refer to [1, 3, 17–21, 24]
and references therein.

A triangular array {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} of random variables is said to be uniformly
integrable in the Cesàro sense (see Chandra [5]) if

lim
a→∞

1

kn

kn∑

i=1

E(|Xn,i |1(|Xn,i | > a)) = 0.

In [6], Chandra and Goswami presented the de La Vallée–Poussin criterion for uniform inte-
grability in the Cesàro sense which reads as follows: A triangular array of random variables
{Xn,i , 1 ≤ i ≤ kn, n ≥ 1} is uniformly integrable in the Cesàro sense if and only if there
exists a measurable function g : [0,∞) → [0,∞)with g(0) = 0, g(x)/x → ∞ as x → ∞,
and

sup
n≥1

1

kn

kn∑

i=1

E(g(|Xn,i |)) < ∞.

The following two lemmas are used in the proof of the main results. The first lemma
provides a necessary condition for a weak law of large numbers for the maximum

max1≤i≤kn |Xn,i | P→ 0. The proof follows from Proposition 2.5 of Thành [21] and so is
omitted. We also refer to Lemma 3.2 of Wu and Wang [23] for a similar result.

Lemma 2.1 Let {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} be a triangular array of random variables such
that for all n ≥ 1, the collection {Xn,i , 1 ≤ i ≤ kn} satisfies Condition (H2). Then there
exists a constant C1 depending only on C0 such that for all ε > 0 and n ≥ 1,

(
1 − P

(
max

1≤i≤kn
|Xn,i | > ε

))2 kn∑

i=1

P
(|Xn,i | > ε

) ≤ C1P

(
max

1≤i≤kn
|Xn,i | > ε

)
. (2.3)

Furthermore, if max1≤i≤kn |Xn,i | P→ 0 as n → ∞, then for all ε > 0, there exists n0
depending only on ε such that

kn∑

i=1

P
(|Xn,i | > x

) ≤ 4C1P

(
max

1≤i≤kn
|Xn,i | > x

)
for all x ≥ ε, n ≥ n0,

where C1 is as in (2.3), and therefore

lim
n→∞

kn∑

i=1

P
(|Xn,i | > ε

) = 0 for all ε > 0.

The last lemma is Corollary 3.1.1 in [9].
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Lemma 2.2 Let {Xi , 1 ≤ i ≤ n} be independent mean 0 random variables such that for some
constant A > 0,

max
1≤i≤n

|Xi | ≤ A a.s.

Then for all ε > 0, we have

n∑

i=1

EX2
i ≤ ε2 +

(ε + A)2P
(
max1≤k≤n

∣∣∣
∑k

i=1 Xi

∣∣∣ > ε
)

1 − P

(
max1≤k≤n

∣∣∣
∑k

i=1 Xi

∣∣∣ > ε
) .

3 Sharp sufficient conditions for mean convergence for themaximal
partial sums

In this section, we provide sharp sufficient conditions for mean convergence for the maximal
partial sums from arrays of random variables satisfying Condition (M2).

Theorem 3.1 Let 1 ≤ p < 2 and let {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} be a triangular array of
integrable random variables such that for each n ≥ 1, the collection {Xn,i , 1 ≤ i ≤ kn}
satisfies Condition (M2). Let {bn, n ≥ 1} be an increasing sequence of positive constants
with limn→∞ bn = ∞. If there exist a constant C1 > 0 and δ ∈ (0, 2 − p) such that

sup
n≥1

1

bp
n

kn∑

i=1

E
(|Xn,i |p1

(|Xn,i | > bnε
)) ≤ C1

εδ
for all 0 < ε < 1 (3.1)

and

lim
n→∞

1

bp
n

kn∑

i=1

E
(|Xn,i |p1

(|Xn,i | > bnε
)) = 0 for all ε > 0, (3.2)

then

1

bn
max

1≤k≤kn

∣∣∣∣∣

k∑

i=1

(
Xn,i − EXn,i

)
∣∣∣∣∣
Lp→ 0 as n → ∞. (3.3)

Conversely, if EXn,i ≡ 0 and (3.3) holds, then so does (3.2).

Before presenting the proof of Theorem 3.1, we would like to provide some comments
on conditions (3.1) and (3.2). While conditions (3.1) and (3.2) appear to be similar, they are
independent in the sense that neither implies the other. The first example shows that (3.1)
holds while (3.2) does not.

Example 3.2 Let kn ≡ n, 1 ≤ p < 2, and bn ≡ n1/p . Let {Xn, n ≥ 1} be a sequence of
symmetric random variables such that

P(Xn = 0) = 1 − 1

log n
and P(Xn = ±n1/p log1/p n) = 1

2 log n
, n ≥ 1.

Let {Xn,i , 1 ≤ i ≤ n, n ≥ 1} be a triangular array of random variables such that for all
n ≥ 1,

Xn,i =
{
0 if 1 ≤ i < n,

Xn if i = n.
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Then for all n ≥ 1, we have

1

bp
n

kn∑

i=1

E
(|Xn,i |p1

(|Xn,i | > bnε
)) = 1

n
E

(|Xn |p1
(|Xn | > n1/pε

))

= 1

n
E

(|Xn |p
)

= 1 ≤ 1

εδ
for all δ > 0 and ε ∈ (0, 1).

This implies that (3.1) holds but (3.2) fails.

In the next example, (3.1) fails but (3.2) holds. Example 3.3 also shows that condition
(3.1) is sharp in the sense that Theorem 3.1 may fail if (3.1) is slightly weakened to

sup
n≥1

1

bp
n

kn∑

i=1

E
(|Xn,i |p1

(|Xn,i | > bnε
)) ≤ C2

ε2−p
for all 0 < ε < 1, (3.4)

where C2 is a positive constant.

Example 3.3 Let kn ≡ n, p = 1, and bn = n1/p = n, n ≥ 1. Let {Xn,i , 1 ≤ i ≤ n, n ≥ 1}
be a array of independent symmetric random variables such that

P(Xn,i = 0) = 1 − 1

i
and P(Xn,i = ±n/ log1/2 n) = 1

2i
, 1 ≤ i ≤ n, n ≥ 1.

Let ε ∈ (0, 1) be arbitrary. Then for all n satisfying log n ≥ 1/ε2, we have

1

bp
n

kn∑

i=1

E
(|Xn,i |p1

(|Xn,i | > bnε
)) = 1

n

n∑

i=1

E
(|Xn,i |1

(|Xn,i | > nε
))

= 0

(3.5)

implying that (3.2) holds. For all n satisfying log n < 1/ε2, we have

1

bp
n

kn∑

i=1

E
(|Xn,i |p1

(|Xn,i | > bnε
)) = 1

n

n∑

i=1

E
(|Xn,i |1

(|Xn,i | > nε
))

= 1

log1/2 n

n∑

i=1

1

i

≤ 10 log1/2 n ≤ 10

ε
,

(3.6)

which, together with (3.5), implies that (3.4) holds with C2 = 10.
Now, for any sufficiently small ε > 0, and for all n satisfying 1/ε2 ≤ 4 log n < 4/ε2, we

have

1

bp
n

kn∑

i=1

E
(|Xn,i |p1

(|Xn,i | > bnε
)) = 1

log1/2 n

n∑

i=1

1

i

≥ log1/2 n ≥ 1

2ε

showing that (3.1) fails for every universal constants C1 and δ ∈ (0, 1).

123



Sharp sufficient conditions for mean convergence... Page 7 of 17    40 

Finally, we will show that (3.3) fails. It is clear that for all n ≥ 1,

max
1≤i≤n

|Xn,i |
n

≤ 1 a.s.

Applying Lemma 2.2 with ε = 1/4, we have for all n ≥ 1,

1

n2

n∑

i=1

EX2
n,i ≤ 1

16
+ 25

16
×

P

(
max1≤k≤n

∣∣∣
∑k

i=1 Xn,i

∣∣∣ > n/4
)

1 − P

(
max1≤k≤n

∣∣∣
∑k

i=1 Xi

∣∣∣ > n/4
) . (3.7)

If (3.3) holds, then there exists n0 such that P
(
max1≤k≤n

∣∣∣
∑k

i=1 Xn,i

∣∣∣ > n/4
)

≤ 1/4 for all

n ≥ n0. Therefore, we have from (3.7) that

1

n2

n∑

i=1

EX2
n,i ≤ 1

16
+ 25

48
< 1 for all n ≥ n0. (3.8)

However, we have

1

n2

n∑

i=1

EX2
n,i = 1

log n

n∑

i=1

1

i
≥ 1, n ≥ 1

contradicting (3.8). Therefore, (3.3) must fail.

The rest of this section is devoted to proving Theorem 3.1.

Proof of Theorem 3.1. Firstly, we prove the sufficiency. Assume that (3.1) and (3.2) hold. For
n ≥ 1, 1 ≤ i ≤ kn and t > 0, set

Yn,i,t = −bnt
1/p1(Xn,i < −bnt

1/p) + Xn,i1(|Xn,i | ≤ bnt
1/p) + bnt

1/p1(Xn,i > bnt
1/p).

Then it follows from (3.2) that

sup
t≥1

1

bnt1/p

kn∑

i=1

E|Xn,i − Yn,i,t | ≤ 1

bn

kn∑

i=1

E
(|Xn,i |1

(|Xn,i | > bn
))

≤ 1

bp
n

kn∑

i=1

E
(|Xn,i |p1

(|Xn,i | > bn
))

→ 0 as n → ∞.

(3.9)
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Let ε0 > 0 be arbitrary. Then for all large n and for all t ≥ 1, we have

P

(
1

bn
max

1≤k≤kn

∣∣∣∣∣

k∑

i=1

(Xn,i − EXn,i )

∣∣∣∣∣ > ε0

)

≤
kn∑

i=1

P
(|Xn,i | > bnt

1/p)

+ P

(
max

1≤k≤kn

∣∣∣∣∣

k∑

i=1

(Yn,i,t − EXn,i )

∣∣∣∣∣ > bnε0

)

≤ o(1) + P

(
max

1≤k≤kn

∣∣∣∣∣

k∑

i=1

(Yn,i,t − EYn,i,t )

∣∣∣∣∣ > bnε0/2

)

≤ o(1) + 4

b2nε
2
0

E

(
max

1≤k≤kn

∣∣∣∣∣

k∑

i=1

(Yn,i,t − EYn,i,t )

∣∣∣∣∣

)2

≤ o(1) + 4C0

b2nε
2
0

kn∑

i=1

EY 2
n,i,t ,

(3.10)

where we have applied (3.2) and (3.9) in the second inequality, and (2.1) in the last inequality.
We will now estimate the last term in (3.10). Let 0 < ε < 1/2 be arbitrary. Then

1

b2n

kn∑

i=1

EY 2
n,i,1 ≤

kn∑

i=1

1

b2n

∫ ε2b2n

0
P

(|Xn,i | > u1/2
)
d u

+
kn∑

i=1

1

b2n

∫ b2n

ε2b2n

P
(|Xn,i | > u1/2

)
d u

≤
kn∑

i=1

∫ ε2

0
P

(|Xn,i | > x1/2bn
)
d x

+
kn∑

i=1

1

b2n

∫ b2n

ε2b2n

P
(|Xn,i | > εbn

)
d u

≤
∫ ε2

0
b−p
n x−p/2

kn∑

i=1

E
(|Xn,i |p1

(|Xn,i | > x1/2bn
))
d x

+
kn∑

i=1

P
(|Xn,i | > εbn

)

≤ C1

∫ ε2

0

d x

x (p+δ)/2
+

kn∑

i=1

P
(|Xn,i | > εbn

)

= 2C1ε
2−p−δ

(2 − p − δ)
+

kn∑

i=1

P
(|Xn,i | > εbn

)
.

(3.11)
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It is clear that (3.2) implies

lim
n→∞

kn∑

i=1

P
(|Xn,i | > εbn

) = 0 for all ε > 0. (3.12)

Since 0 < ε < 1/2 is arbitrary and 2− p− δ > 0, it follows from (3.10), (3.11), (3.12) that

P

(
1

bn
max

1≤k≤kn

∣∣∣∣∣

k∑

i=1

(Xn,i − EXn,i )

∣∣∣∣∣ > ε0

)
→ 0 as n → ∞ for all ε0 > 0. (3.13)

Let

I (n) =
∫ 1

0
P

(
1

bn
max

1≤k≤kn

∣∣∣∣∣

k∑

i=1

(Xn,i − EXn,i )

∣∣∣∣∣ > t1/p
)
d t, n ≥ 1.

By (3.13) and the Lebesgue dominated convergence theorem, we obtain

I (n) → 0 as n → ∞. (3.14)

For all n sufficiently large, we have

E

(
1

bn
max

1≤k≤kn

∣∣∣∣∣

k∑

i=1

(Xn,i − EXn,i )

∣∣∣∣∣

)p

= I (n) +
∫ ∞

1
P

(
1

bn
max

1≤k≤kn

∣∣∣∣∣

k∑

i=1

(Xn,i − EXn,i )

∣∣∣∣∣ > t1/p
)
d t

≤ I (n) +
∫ ∞

1

kn∑

i=1

P
(|Xn,i | > bnt

1/p) d t

+
∫ ∞

1
P

(
max

1≤k≤kn

∣∣∣∣∣

k∑

i=1

(Yn,i,t − EYn,i,t )

∣∣∣∣∣ > bnt
1/p/2

)
d t

≤ I (n) + 1

bp
n

kn∑

i=1

E
(|Xn,i |p1

(|Xn,i | > bn
))

+
∫ ∞

1
P

(
max

1≤k≤kn

∣∣∣∣∣

k∑

i=1

(Yn,i,t − EYn,i,t )

∣∣∣∣∣ > bnt
1/p/2

)
d t

= o(1) +
∫ ∞

1
P

(
max

1≤k≤kn

∣∣∣∣∣

k∑

i=1

(Yn,i,t − EYn,i,t )

∣∣∣∣∣ > bnt
1/p/2

)
d t,

(3.15)

where we have used the same estimate as the first two inequalities of (3.10) in the first
inequality, and (3.2) and (3.14) in the last step. To complete the proof of the sufficiency part,
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it remains to prove that the last term in (3.15) also converges to 0. By using the same estimate
as the last two inequalities of (3.10) and Tonelli’s theorem, we have

∫ ∞

1
P

(
max

1≤k≤kn

∣∣∣∣∣

k∑

i=1

(Yn,i,t − EYn,i,t )

∣∣∣∣∣ > bnt
1/p/2

)
d t ≤ 4C0

kn∑

i=1

∫ ∞

1

EY 2
n,i,t

b2nt
2/p d t

= 4C0

kn∑

i=1

∫ ∞

1

1

t2/p

(∫ t2/p

0
P

(|b−1
n Xn,i | > u1/2

)
d u

)
d t

= 4C0

kn∑

i=1

∫ ∞

1

1

t2/p

(∫ 1

0
P

(|Xn,i | > bnu
1/2) d u +

∫ t2/p

1
P

(|Xn,i | > bnu
1/2) d u

)
d t

= 4pC0

2 − p

kn∑

i=1

(∫ 1

0
P

(|Xn,i | > bnu
1/2) d u +

∫ ∞

1
u p/2−1

P
(|Xn,i | > bnu

1/2) d u
)

= 4pC0

2 − p

kn∑

i=1

(∫ 1

0
P

(|Xn,i | > bnu
1/2) d u +

∫ ∞

1
P

(|Xn,i | > bnx
1/p) d x

)

≤ 4pC0

2 − p

kn∑

i=1

(∫ 1

0
P

(|Xn,i | > bnu
1/2) d u + 1

bp
n

E
(|Xn,i |p1

(|Xn,i | > bn
)))

.

(3.16)

From (3.1), we have for all u ∈ (0, 1) that

sup
n≥1

kn∑

i=1

P
(|Xn,i | > bnu

1/2) ≤ sup
n≥1

1

bp
n u p/2

kn∑

i=1

E
(|Xn,i |p1

(|Xn,i | > bnu
1/2))

≤ C1

u(p+δ)/2
.

(3.17)

Since p + δ < 2, the function f (u) = C1/u(p+δ)/2 is integrable on (0, 1). It thus follows
from (3.12), (3.17), and the Lebesgue dominated convergence theorem that

lim
n→∞

∫ 1

0

kn∑

i=1

P
(|Xn,i | > bnu

1/2) d u = 0. (3.18)

Combining (3.16), (3.2) and (3.18) yields

lim
n→∞

∫ ∞

1
P

(
max

1≤k≤kn

∣∣∣∣∣

k∑

i=1

(Yn,i,t − EYn,i,t )

∣∣∣∣∣ > bnt
1/p/2

)
d t = 0. (3.19)

Combining (3.15) and (3.19) completes the proof of the sufficiency part of the theorem.
Finally, we prove the necessity. Assume that EXn,i ≡ 0 and (3.3) holds. Let ε ∈ (0, 1) be

arbitrary. Since

max
1≤i≤kn

|Xn,i | ≤ 2 max
1≤k≤kn

∣∣∣∣∣

k∑

i=1

Xn,i

∣∣∣∣∣ , n ≥ 1,

we obtain from (3.3) that

1

bn
max

1≤i≤kn

∣∣Xn,i
∣∣ Lp→ 0 as n → ∞. (3.20)
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By (3.20) and the second part of Lemma 2.1, there exists a positive integer n0 depending
only on ε such that

kn∑

i=1

P
(|Xn,i | > bnx

) ≤ 4C2P

(
max

1≤i≤kn
|Xn,i | > bnx

)
for all x ≥ ε, n ≥ n0,

where C2 is a constant depending only on C0. Therefore, for all n ≥ n0, we have

1

bp
n

kn∑

i=1

E
(|Xn,i |p1

(|Xn,i | > bnε
))

=
kn∑

i=1

(∫ ∞

ε p
P

(|Xn,i | > bnx
1/p) d x + ε p

P
(|Xn,i | > bnε

))

≤ 4C2

(∫ ∞

ε p
P

(
max

1≤i≤kn
|Xn,i | > bnx

1/p
)
d x + ε p

P

(
max

1≤i≤kn
|Xn,i | > bnε

))

= 4C2

bp
n

E

(
max

1≤i≤kn
|Xn,i |p1

(
max

1≤i≤kn
|Xn,i | > bnε

))

≤ 4C2

bp
n

E

(
max

1≤i≤kn
|Xn,i |

)p

. (3.21)

Combining (3.20) and (3.21) yields (3.2). The proof of the theorem is completed. ��
Remark 3.4 Since Lemma 2.1 holds under the assumption that the collection {Xn,i , 1 ≤ i ≤
kn} satisfies Condition (H2) for all n ≥ 1, the same holds for the necessary part of Theorem
3.1.

4 Mean convergence for themaximal partial sums under regularly
varyingmoment conditions

In this section, we will apply the sufficiency part of Theorem 3.1 to give a positive answer
to Question 1. The main result of this section is the following theorem.

Theorem 4.1 Let 1 ≤ p < 2 and let L(·) be an increasing slowly varying function defined
on [0,∞) such that L(x) ≥ 1 for x ≥ 0. Let {Xn,i , 1 ≤ i ≤ n, n ≥ 1} be a triangular array
of integrable random variables such that for all n ≥ 1, the collection {Xn,i , 1 ≤ i ≤ n}
satisfies Condition (M2). If the array {|Xn,i |pL(|Xn,i |p), 1 ≤ i ≤ n, n ≥ 1} is uniformly
integrable in the Cesàro sense, then

1

n1/p L̃1/p(n)
max
1≤k≤n

∣∣∣∣∣

k∑

i=1

(Xn,i − EXn,i )

∣∣∣∣∣
Lp→ 0 as n → ∞. (4.1)

Proof Let bn ≡ n1/p L̃1/p(n) and kn ≡ n. By the sufficiency part of Theorem 3.1, we only
have to show that (3.1) and (3.2) are satisfied. To do this, we will use the same argument as
in the proof of Claim 1 in [19]. Firstly, we will verify (3.1). By the second half of (1.1), we
have limn→∞ L̃(n)L(nL̃(n)) = 1. It implies that

sup
n≥1

1

L̃(n)L(nL̃(n))
:= c1 < ∞. (4.2)
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Since L(x) ≥ 1 for all x ≥ 0 and {|Xn,i |pL(|Xn,i |p), 1 ≤ i ≤ n, n ≥ 1} is uniformly
integrable in the Cesàro sense,

sup
n≥1

1

n

n∑

i=1

E
(|Xn,i |p

) ≤ sup
n≥1

1

n

n∑

i=1

E
(|Xn,i |pL(|Xn,i |p)

) := c2 < ∞. (4.3)

Let β ∈ (0, 2/p− 1). By the Potter bound (see, e.g., Theorem B.1.9 (5) in [10]), there exists
a0 > 0 such that for all ε ∈ (0, 1) and for all x ≥ a0, we have

L(x/ε) ≤ 4L(x)

εβ
. (4.4)

By using the monotonicity of the function L(x) and (4.2)–(4.4), we have for all ε ∈ (0, 1)
and n ≥ 1,

1

bp
n

n∑

i=1

E
(|Xn,i |p1

(|Xn,i | > bnε
))

≤ 1

bp
n L(bp

n )

n∑

i=1

E
(|Xn,i |pL(|Xn,i |p/ε p)1

(|Xn,i | > bnε
))

≤ 1

nL̃(n)L(nL̃(n))

n∑

i=1

E
(|Xn,i |pL(a0/ε

p)
)

+ 1

nL̃(n)L(nL̃(n))

n∑

i=1

E
(|Xn,i |pL(|Xn,i |p/ε p)1

(|Xn,i |p > a0
))

≤ 4c1
n

n∑

i=1

(
L(a0)E

(|Xn,i |p
)

ε pβ
+ E

(|Xn,i |pL(|Xn,i |p)
)

ε pβ

)

≤ 4c1c2(L(a0) + 1)

ε pβ
.

(4.5)

By choosing C1 = 4c1c2(L(a0) + 1) and δ = pβ ∈ (0, 2 − p), we obtain (3.1).
Next, we will verify (3.2). Let ε ∈ (0, 1) be arbitrary. Proceeding in a similar manner as

in (4.5), we have for all n ≥ 1,

1

bp
n

n∑

i=1

E
(|Xn,i |p1

(|Xn,i | > bnε
)) ≤ 4c1

nε pβ

n∑

i=1

(
L(a0)E

(|Xn,i |p1(|Xn,i | > εbn)
)

+E
(|Xn,i |pL(|Xn,i |p)1(|Xn,i | > εbn)

))
.

(4.6)

Since L(x) ≥ 1 and {|Xn,i |pL(|Xn,i |p), 1 ≤ i ≤ n, n ≥ 1} is uniformly integrable in the
Cesàro sense, we have

lim
n→∞ sup

m≥1

1

m

m∑

i=1

E
(|Xm,i |pL(|Xm,i |p)1(|Xm,i | > εbn)

) = 0, (4.7)

and

lim
n→∞ sup

m≥1

1

m

m∑

i=1

E
(|Xm,i |p1(|Xm,i | > εbn)

) = 0. (4.8)
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Combining (4.6), (4.7) and (4.8) yields (3.2). The proof of the theorem is completed. ��
Concerning Theorem 4.1, a Reviewer kindly raised a question as to whether or not the

assumptions that L(·) is increasing and L(x) ≥ 1 for x ≥ 0 can be removed for the case
1 < p < 2. This leads to the following example. It shows that Theorem 4.1 may fails if
L(x) ↓ 0 as x → ∞.

Example 4.2 Let 1 < p < 2 and let {Xn,i , 1 ≤ i ≤ n, n ≥ 1} be an array of inte-
grable, symmetric, independent and identically distributed random variables such that
E(|X1,1|p log−1 |X1,1|) < ∞ and E|X1,1|p = ∞. Let L(x) = log−1 x , x ≥ 0. Then
all assumptions of Theorem 4.1 are satisfied, except that L(x) is not increasing, and
limx→∞ L(x) = 0. Since EXn,i ≡ 0 and for all n ≥ 1,

max
1≤i≤n

|Xn,i | ≤ 2 max
1≤k≤n

∣∣∣∣∣

k∑

i=1

Xn,i

∣∣∣∣∣ ,

we have

E

(
2

n1/p L̃1/p(n)
max
1≤k≤n

∣∣∣∣∣

k∑

i=1

(Xn,i − EXn,i )

∣∣∣∣∣

)p

≥ 1

n log n
E

(
max
1≤i≤n

|Xn,i |p
)

≥ 1

n log n
E|X1,1|p = ∞

so that (4.1) fails.

Remark 4.3 We note that in the context of the Marcinkiewicz–Zygmund strong and weak
law of large numbers, the assumptions that L(·) is increasing and L(x) ≥ 1 for x ≥ 0 are
required only for the case p = 1. We refer to Theorem 3.1 in [2], Theorem 1 in [16], and
Corollary 4.10 in [18] for details.

The following corollary is a special case of Theorem 4.1. To our best knowledge, this
result is also new even in the independence case. Almost sure convergence for sequences
of negatively associated random variables under a similar moment condition was studied by
Miao et al. [12].

Corollary 4.4 Let α ≥ 0, 1 ≤ p < 2 and let {Xn,i , 1 ≤ i ≤ n, n ≥ 1} be a triangular array
of integrable random variables such that for all n ≥ 1, the collection {Xn,i , 1 ≤ i ≤ n}
satisfies Condition (M2). If {|Xn,i |p(log |Xn,i |)α, 1 ≤ i ≤ n, n ≥ 1} is uniformly integrable
in the Cesàro sense, then

(log n)α/p

n1/p
max
1≤k≤n

∣∣∣∣∣

k∑

i=1

(
Xn,i − EXn,i

)
∣∣∣∣∣
Lp→ 0 as n → ∞. (4.9)

Proof By choosing L(x) ≡ logα x , we have L̃(x) ≡ log−α x . The proof thus follows by
applying Theorem 4.1. ��

The following example shows that in Corollary 4.4, the assumption that
{|Xn,i |p(log |Xn,i |)α, 1 ≤ i ≤ n, n ≥ 1} is uniformly integrable in the Cesàro sense cannot
be replaced with

sup
1≤i≤n,n≥1

E(|Xn,i |p(log |Xn,i |)α) < ∞. (4.10)
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Example 4.5 Let 1 ≤ p < 2, α ≥ 0, and let {Xn, n ≥ 1} be a sequence of independent
symmetric random variables with

P(Xn = 0) = 1 − 1

n
, P(Xn = n1/p log−α/p n) = P(Xn = −n1/p log−α/p n) = 1

2n
, n ≥ 1.

Then it is clear that

sup
n≥1

E(|Xn |p logα |Xn |) = sup
n≥1

(
n log−α n

)
logα

(
n1/p log−α/p n

) × 1

n

= sup
n≥1

(
log

(
n1/p log−α/p n

)

log n

)α

≤ sup
n≥1

(
log

(
n1/p

)

log n

)α

=
(
1

p

)α

< ∞.

(4.11)

For all n satisfying n1/p log−α/p n ≥ n1/(2p), we have

E(|Xn |p(logα |Xn |)1(|Xn |p(logα |Xn |) > a))

= (
n log−α n

)
logα

(
n1/p log−α/p n

) × 1

n

=
(
log

(
n1/p log−α/p n

)

log n

)α

≥
(
log

(
n1/(2p)

)

log n

)α

=
(

1

2p

)α

for all a > 0.

(4.12)

Let {Xn,i , 1 ≤ i ≤ n, n ≥ 1} be a triangular array of random variables with Xn,i = Xi

for all 1 ≤ i ≤ n, n ≥ 1. Then by (4.11) and (4.12), we see that (4.10) is satisfied but
{|Xn,i |p(log |Xn,i |)α, 1 ≤ i ≤ n, n ≥ 1} is not uniformly integrable in the Cesàro sense. Let
bn ≡ n1/p log−α/p n. Then for 0 < ε < 1/4 and for n ≥ 2, we have

n∑

i=1

P(|Xi | > εbn) ≥
n∑

i=�n/2	
P(|Xi | > εbn)

≥
n∑

i=�n/2	

1

n
≥ 1

2
,

(4.13)

so that (3.2) fails. Applying the necessity part of Theorem 3.1 with kn ≡ n, we have

max1≤k≤n

∣∣∣
∑k

i=1 Xi

∣∣∣
bn

Lp
� 0,

i.e., (4.9) fails.
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5 Mean convergence for the partial sums from arrays of rowwise and
pairwise negatively dependent random variables

Mean convergence theorems for pairwise negatively dependent random variables were stud-
ied by various authors.OrdóñezCabrera andVolodin [13, Theorem1] studiedL1 convergence
theorem for weighted sums from arrays {Xn,i , un ≤ i ≤ vn, n ≥ 1} of rowwise and pairwise
negatively dependent random variables satisfying the so-called h-integrability concerning
the array of weights, where {h(n), n ≥ 1} is an increasing sequence of positive constants.
Here and hereafter, {un, n ≥ 1} and {vn, n ≥ 1} denote two sequences of integer numbers
such that un < vn for all n ≥ 1 and lim(vn−un) = ∞. Wu and Guan [22] extended Theorem
1 of Ordóñez Cabrera and Volodin [13] to Lp convergence, 1 ≤ p < 2. To this end, Sung
[15, Theorem 2.1] extended these results by proving the following theorem.

Theorem 5.1 (Sung [15], Theorem 2.1) Let 1 ≤ p < 2 and let {Xn,i , un ≤ i ≤ vn, n ≥ 1}
be a triangular array of rowwise and pairwise negatively dependent random variables. Let
{bn, n ≥ 1} be a sequence of increasing to infinity of positive constants. Suppose that

sup
n≥1

1

bp
n

vn∑

i=un

E|Xn,i |p < ∞ (5.1)

and

lim
n→∞

1

bp
n

vn∑

i=un

E
(|Xn,i |p1

(|Xn,i | > bnε
)) = 0 for all ε > 0, (5.2)

then

1

bn

vn∑

i=un

(
Xn,i − EXn,i

) Lp→ 0 as n → ∞. (5.3)

In Theorem 2.1 of Sung [15], the author stated the result for weighted sums∑vn
i=un

an,i
(
Yn,i − EYn,i

)
, but if we let Xn,i ≡ bnan,i Yn,i , then Theorem 5.1 coincides with

his result. Since pairwise negative dependence enjoys Condition (H2), we obtain following
theorem by using the same steps in the proof of the sufficiency of Theorem 3.1 with only
minor changes.

Theorem 5.2 Theorem 5.1 still holds if (5.1) is weakened to

sup
n≥1

1

bp
n

vn∑

i=un

E
(|Xn,i |p1

(|Xn,i | > bnε
)) ≤ C1

εδ
for all 0 < ε < 1, (5.4)

where C1 > 0 and δ ∈ (0, 2 − p) are some constants which do not depend on ε.

The following example which is inspired by Example 4.8 in Thành [18] shows that (5.4)
is strictly weaker than (5.1).

Example 5.3 Let 1 ≤ p < 2, 0 < α < 1, bn ≡ n1/p log−α/p n, un ≡ 1, vn ≡ n and let
{Xn, n ≥ 1} be a sequence of independent random variables such that

P(Xn = −1) = P(Xn = 1) = 1/2 for n = 1 or n �= 2m, m ≥ 1,
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and

P
(
X2m = −2m/p/m1/p) = P

(
X2m = 2m/p/m1/p) = 1/2 for m ≥ 1.

Let {Xn,i , 1 ≤ i ≤ n, n ≥ 1} of random variables such that Xn,i = Xi for all n ≥ 1,
1 ≤ i ≤ n. For n ≥ 1, we have from (4.35) of Thành [18] that

1

n

n∑

i=1

E
(|Xn,i |p log(|Xn,i |)

) ≤ 1 + 2

p
< ∞.

Therefore, {|Xn,i |p logα |Xn,i |, 1 ≤ i ≤ n, n ≥ 1} is uniformly integrable in the Cesàro
sense by the de La Vallée Poussin criterion for the Cesàro uniform integrability (see Chandra
and Goswami [6, p., 228–230]). Applying Theorem 4.1, we obtain the conclusion (4.1).

Finally, it is clear that for all n ≥ 1, we have

1

bp
n

vn∑

i=un

E|Xn,i |p = logα n

n

n∑

i=1

E|Xi |p ≥ logα n → ∞.

Thus, (5.1) fails, and we cannot apply Theorem 2.1 of Sung [15] (Theorem 5.1) to derive
even (5.3) which is clearly weaker than (4.1).

Remark 5.4 Since (5.4) is strictly weaker than (5.1), Theorem 5.2 improves Theorem 2.1 of
Sung [15], which, in turn, improves Theorem 1 of Ordóñez Cabrera and Volodin [13] and
Theorems 3.1-−3.3 of Wu and Guan [22].

Remark 5.5 Wu et al. [25] established mean convergence of the partial sums from triangular
arrays of rowwise widely orthant dependent random variables. It would be interesting to see
if one can use the method developed in this paper to give an improvement of Theorem 3.1 in
[25] (by weakening condition (3) of Theorem 3.1 in [25]).
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Indian J. Stat. Ser. A 54(2), 215–231 (1992)

7. Chow, Y.S.: On the L p-convergence for n−1/pSn , 0<p<2. Ann. Math. Stat. 42(1), 393–394 (1971)
8. Gut, A.: An extension of the Kolmogorov-Feller weak law of large numbers with an application to the

St. Petersburg game. J. Theory Probab. 17(3), 769–779 (2004)
9. Gut, A.: Probability: A Graduate Course, 2nd edn. Springer, New York (2013)

10. Haan, L., Ferreira, A.: Extreme Value Theory: An Introduction. Springer, New York (2006)
11. Jessen, H.A., Mikosch, T.: Regularly varying functions. Publications de L’institut Mathematique

(Beograd) (N.S.) 80(94), 171–192 (2006)
12. Miao, Y., Mu, J., Xu, J.: An analogue for Marcinkiewicz-Zygmund strong law of negatively associ-

ated random variables. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A.
Matemáticas 111(3), 697–705 (2017)

13. Ordóñez Cabrera, M., Volodin, A.: Mean convergence theorems and weak laws of large numbers for
weighted sums of random variables under a condition of weighted integrability. J. Math. Anal. Appl.
305(2), 644–658 (2005)

14. Lita da Silva, J.: Convergence in p-mean for arrays of random variables. RM 74(1), 1–11 (2019)
15. Sung, S.H.: Convergence in r -mean of weighted sums of NQD random variables. Appl. Math. Lett. 26(1),

18–24 (2013)
16. Thành, L.V.: On the Baum-Katz theorem for sequences of pairwise independent random variables with

regularly varying normalizing constants. Comptes Rendus Mathématique. Académie des Sciences. Paris
358(11–12), 1231–1238 (2020)

17. Thành, L.V.: Mean convergence theorems for arrays of dependent random variables with applications to
dependent bootstrap and non-homogeneous Markov chains. Stat. Pap. https://doi.org/10.1007/s00362-
023-01427-y pp. 1–28 (2023)

18. Thành, L.V.: On a new concept of stochastic domination and the laws of large numbers. Test 32(1), 74–106
(2023)

19. Thành, L.V.: On an extension of the Pyke–Root theorem. Manuscript pp. 1–16 (2023)
20. Thành, L.V.: On Rio’s proof of limit theorems for dependent random fields. Manuscript pp. 1–27 (2023)
21. Thành, L.V.: The Hsu–Robbins–Erdös theorem for the maximum partial sums of quadruplewise indepen-

dent random variables. J. Math. Anal. Appl. 521(1), 126896 (2023)
22. Wu, Y., Guan, M.: Mean convergence theorems and weak laws of large numbers for weighted sums of

dependent random variables. J. Math. Anal. Appl. 377(2), 613–623 (2011)
23. Wu, Y., Wang, X.: Equivalent conditions of complete moment and integral convergence for a class of

dependent random variables.Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Ser.
A Math. 112(2), 575–592 (2018)

24. Wu, Y., Wang, X., Hu, S., Yang, L.: Weighted version of strong law of large numbers for a class of random
variables and its applications. Test 27(2), 379–406 (2018)

25. Wu, Y., Wang, X., Hu, T.C., Ordóñez Cabrera, M., Volodin, A.: Limiting behaviour for arrays of rowwise
widely orthant dependent random variables under conditions of R-h-integrability and its applications.
Stochastics 91(6), 916–944 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1007/s00362-023-01427-y
https://doi.org/10.1007/s00362-023-01427-y

	Sharp sufficient conditions for mean convergence of the maximal partial sums of dependent random variables with general norming sequences
	Abstract
	1 Introduction
	2 Preliminaries
	3 Sharp sufficient conditions for mean convergence for the maximal partial sums
	4 Mean convergence for the maximal partial sums under regularly varying moment conditions
	5 Mean convergence for the partial sums from arrays of rowwise and pairwise negatively dependent random variables
	Acknowledgements
	References


